If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+28x-1156=0
a = 1; b = 28; c = -1156;
Δ = b2-4ac
Δ = 282-4·1·(-1156)
Δ = 5408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5408}=\sqrt{2704*2}=\sqrt{2704}*\sqrt{2}=52\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-52\sqrt{2}}{2*1}=\frac{-28-52\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+52\sqrt{2}}{2*1}=\frac{-28+52\sqrt{2}}{2} $
| Y=5x-274 | | 2(x-8)=2x+15 | | 3.6x+4-3x=9x-14 | | x=5+0.5/2.3 | | 1.3x+2-5x=14-6x | | 4(2x+5)-10=15x+3 | | |3a+5|=a+7 | | -24=-v/9 | | 3x^2+26x+37=0 | | 56-7u=u | | 2-1/n=3n+16 | | 8000-0.04x=12000-x | | 40=11v-3v | | 0.04x=4000-x | | 1.6-0.8x^2=8.8 | | -v/8=21 | | -29=v/3 | | 2-3(2y+5)=5 | | w/2+11=40 | | -5x^2-15=0 | | n+4=-19 | | 2x-12=8(x+4 | | 15x2^+4x-3=0 | | n/3-3=-7 | | 15x+4x-3=0 | | z2+3z–18=0 | | x^2+13x+70=0 | | 14.39=0.75x+3.14 | | 14.39=$0.75x+$3.14 | | 440-2x=120-10x+.25x^2 | | 2x-14=6x-3 | | 440-2Q=120-10x+.25x^2 |